175 research outputs found

    Dispersive regime of the Jaynes-Cummings and Rabi lattice

    Full text link
    Photon-based strongly-correlated lattice models like the Jaynes-Cummings and Rabi lattices differ from their more conventional relatives like the Bose-Hubbard model by the presence of an additional tunable parameter: the frequency detuning between the pseudo-spin degree of freedom and the harmonic mode frequency on each site. Whenever this detuning is large compared to relevant coupling strengths, the system is said to be in the dispersive regime. The physics of this regime is well-understood at the level of a single Jaynes-Cummings or Rabi site. Here, we extend the theoretical description of the dispersive regime to lattices with many sites, for both strong and ultra-strong coupling. We discuss the nature and spatial range of the resulting qubit-qubit and photon-photon coupling, demonstrate the emergence of photon- pairing and squeezing, and illustrate our results by exact diagonalization of the Rabi dimer.Comment: 22 pages, 7 figures, 1 table, Published by NJP, Focus Issues "Focus on Quantum Microwave Field Effects in Superconducting Circuits

    Measurement Protocol for the Entanglement Spectrum of Cold Atoms

    Full text link
    Entanglement, and, in particular the entanglement spectrum, plays a major role in characterizing many-body quantum systems. While there has been a surge of theoretical works on the subject, no experimental measurement has been performed to date because of the lack of an implementable measurement scheme. Here, we propose a measurement protocol to access the entanglement spectrum of many-body states in experiments with cold atoms in optical lattices. Our scheme effectively performs a Ramsey spectroscopy of the entanglement Hamiltonian and is based on the ability to produce several copies of the state under investigation together with the possibility to perform a global swap gate between two copies conditioned on the state of an auxiliary qubit. We show how the required conditional swap gate can be implemented with cold atoms, either by using Rydberg interactions or coupling the atoms to a cavity mode. We illustrate these ideas on a simple (extended) Bose-Hubbard model where such a measurement protocol reveals topological features of the Haldane phase
    • …
    corecore